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Abstract

Striking differences in living standards between urban and rural areas in low income countries

pose a puzzle for growth economists. In a conventional spatial equilibrium model, utility is

assumed to be equal across locations; otherwise an individual would have an incentive to move.

Whether disamenities compensate individuals for the higher standard of living in urban areas

remains largely untested. This paper asks whether the spatial distribution of key disamenities

can explain the observed differences in living standards in Sub-Saharan Africa. I construct a

new dataset that links geo-located household surveys on crime, mistrust, living conditions, and

satellite-derived measures of pollution with gridded population density data. This allows me to

view outcomes through the lens of population density in addition to a traditional urban/rural

distinction. I reject the possibility that pollution is a key disamenity of high population density

areas in the twenty African countries in my sample, but the evidence supports the notion that

crime and mistrust are indeed higher in denser areas. However, the magnitudes of these effects

are small compared to the differences in living standards, suggesting that these variables do

not offset measured differences in income, wages, or living conditions. The results call into

question the usefulness of spatial equilibrium concepts for Sub-Saharan Africa.
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1. Introduction

Development economists have long recognized that apparent living standards in urban areas

are substantially higher than those of rural areas. These gaps exist in real measures of well-

being, and thus do not merely reflect price differences (Young, 2014). The pattern is also

present for more and less populated areas within rural and urban locations, and within ed-

ucation groups (Gollin, Kirchberger, and Lagakos, 2015). Much of the economics literature

assumes that the allocation of people across space is determined to a first order by a spatial

equilibrium, in which utility is equalized across space (Rosen, 1979; Roback, 1982; Glaeser

and Gottlieb, 2009).1 In this view, higher living standards in cities must be accompanied by

corresponding disamenities associated with living in urban areas or densely populated areas.2

If a location provided a better bundle of consumption and amenities for a given set of prices, it

would attract in-migration, until various congestion-related disamenities equalize well-being

across locations. Previous research has shown that the income advantages in urban areas are

compounded by differences in housing quality and health outcomes such as anemia prevalence

and the proportion of children who consume a minimum acceptable diet (Gollin, Kirchberger,

and Lagakos, 2015).

It remains untested whether differences in living standards in Africa can be rationalized by

disamenities of more densely populated areas. This paper tests whether gaps in living standards

can be understood by offsetting differences in key intangible disamenities (crime, pollution,

and mistrust). These disamenities have hitherto been difficult to measure at a fine geographic

scale. However, this set of disamenities is often assumed to be worse in urban areas than in

rural areas, and on that basis, offered as a potential disadvantage of urban life.3 The central

finding of the paper is that the magnitude and sign of these disamenities suggests that they are

unable to offset the differences in other dimensions of living standards. Somewhat surprisingly,

pollution levels are higher in rural areas than in urban areas.4 Crime and mistrust are slightly

higher in denser areas, but the differences are small compared to the differences in living

1Examples of recent papers that assume a spatial equilibrium holds within countries include Desmet, Nagy, and

Rossi-Hansberg (2015); Henderson, Squires, Storeygard, and Weil (2015); Allen and Arkolakis (2014); Albouy

(2009); Harari (2015); Diamond (2015); and Hanlon (2015).
2Nordhaus and Tobin (1972) articulated this idea arguing that “the persistent association of higher wages with

higher population densities offers one method of estimating the costs of urban life as they are valued by people

making residential and occupational decisions”, and pricing the “disamenity premium” at 5% of Gross National

Product.
3Banzhaf and Walsh (2008) find pollution to be an important determinant of locational choice in the United

States.
4This is based on the level of particulate matter less than 2.5 microns in diameter (PM2.5), a common measure

of pollution (World Bank, 2015). As discussed below, this somewhat surprising result differs from the pattern

observed in other parts of the world and reflects the high levels of naturally-occurring dust in rural Africa, along

with the lack of polluting industry.
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standards. This evidence challenges the idea that a spatial equilibrium currently holds in Africa.

My main contribution is to exploit new sources of data and advances in mapping technology

to test whether the within-country spatial distribution of amenities is consistent with a simple

spatial equilibrium in a large number of countries in Sub-Saharan Africa. In the process, I

move beyond traditional urban-rural distinctions by viewing locations through the lens of pop-

ulation density. If cities are defined as the absence of space between people, this is an intuitive

way of examining the data (Jacobs, 1961; Glaeser, 2011). Further, I do not have to rely on

official classifications of what is urban and rural, which vary both across space and time. For

example, linking location data from the Financial Inclusion survey for Bangladesh, India and

Tanzania with population density data, I find that the average density of rural respondents is

638 people per square kilometer in India, which is almost as high as the average density for

respondents in Tanzania classified as urban (725 people per square kilometer), and less than

half the population density of rural respondents in Bangladesh (1,517 people per square kilo-

meter). Classifications also change across time: before 1991 Uganda classified villages with

more than 1000 people as urban, after 1991 the cut-off was raised to 2000 people (UN, 2015).5

My approach involves constructing a new dataset that spatially links household surveys on

crime, mistrust and reported living standards with satellite derived measures of pollution, and

gridded population density data. Specifically, I geo-locate the respondents from several rounds

of the Afrobarometer surveys and link them with recent estimates on pollution concentrations

for particulate matter (PM2.5) and nitrogen dioxide (NO2) distributions derived from satellite

observations (van Donkelaar, Martin, Brauer, and Boys, 2015; Geddes, Martin, Boys, and van

Donkelaar, 2015). I also use a number of further geo-referenced household surveys: Living

Standards Measurement Surveys (LSMS) and Demographic and Health Surveys (DHS). The

population density data come from the Gridded Population of the World, Version 4, a recent

population density dataset that involves a minimal level of modelling by distributing aspatial

population counts from census data across spatial administrative units (Center for International

Earth Science Information Network, 2015).6 This allows me to assign a particular pollution

level and population density level to each respondent in the Afrobarometer survey. This new

dataset enables me to test whether the data is consistent with a simple static spatial equilibrium,

using an intuitive prediction of the Rosen-Roback framework. As geo-referenced data become

available for more countries and time periods, my methodology can be readily extended to

5Dorélien, Balk, and Todd (2013) find substantial disagreement when comparing urban-rural classifications

used in the Demographic and Health Surveys which are based on official classifications with urban extents from

the Global Rural-Urban Mapping Project, a satellite-based dataset: about 66 percent of clusters that were classified

as rural in the survey-based dataset fell into urban extents as captured by nighttime lights.
6For instance, pollution or other disamenities are not used to model the distribution of the population across

space.
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additional countries and studying dynamics.

I reject the hypothesis that pollution increases with population density in Sub-Saharan Africa.

On the contrary, natural sources of PM2.5 measures are substantial, and densely populated

areas tend to have lower PM2.5 concentrations compared to sparsely populated areas. For

example, the average PM2.5 concentration for residents of the lowest quartile of population

density in Nigeria is about 1.5 times the level of the most densely populated quartile (34µg

per m3 versus 24 µg per m3). Average NO2 levels in the whole sample are low on average

with 0.15 µg per m3 and there is no relationship with population density.7 Household-level

data from the DHS suggest that indoor pollution is also lower in more densely populated areas

for two reasons: first, households living in denser areas are more likely to use liquid fuels and

electricity; and second, cooking is more likely to take place outside the home in denser areas

if households use solid fuels. This implies that there is no evidence that higher pollution in

dense areas compensates households for the lower living standards in rural areas.

I next show that property crime and violent crime, fear, and lack of perceived safety are more

prevalent in more densely populated locations. Mistrust towards neighbors and co-ethnics is

significantly higher in more densely populated locations. To gauge whether these disamenities

are likely to provide a satisfactory explanation for the large gap in living standards, I construct

a simple index of a household’s assets and housing quality and show that a doubling of popu-

lation density is associated with an increase in the index of 13% of a standard deviation. For

the same increase in population, the probability of reporting a violent crime increases by 2%

of a standard deviation or 5% of a standard deviation for measures of mistrust. The hetero-

geneity in welfare associated with population density is thus 8 times the heterogeneity in crime

associated with population density, and 5 times the heterogeneity in mistrust associated with

population density. One possibility is that I fail to measure a key disamenity. The question-

naire asks individuals how they rate their own living conditions, a measure which is arguably

an all-encompassing measure of the quality of life across different locations. I find that self-

reported living conditions are significantly higher in denser areas too. Although it is difficult

to know how to interpret these subjective measures of well-being, if taken at face value, the

data suggests that a spatial equilibrium does not currently hold in Africa.

To my knowledge, this is the first paper that tests whether key intangible disamenities can ex-

plain differences in living standards across space in Africa. These gaps in living standards have

been documented both in consumption between urban and rural locations, and between agri-

7For both pollution measures I find significant gradients in other developing countries, such as India and China:

PM2.5 concentration rises until a population density of 400 people per square kilometer and then remains largely

constant. The level at which it flattens out is substantially different as well, 60 µg per m3 in China versus 40 µg

m3 in India.
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cultural and non-agricultural productivity (Young, 2014; Gollin, Lagakos, and Waugh, 2014).

Why these large differences across sectors and space exist in low income countries remains an

open question. Gollin et al. (2014) speculate that amenities of rural areas and the lower cost

of living are possibly keeping workers in sectors with lower productivity. Alternative expla-

nations for differences in living standards across locations include mobility costs (Morten and

Oliveira, 2014), selection and sorting (Young, 2014; Lagakos and Waugh, 2013), the presence

of insurance networks (Munshi and Rosenzweig, 2015) and fear of negative outcomes (Harris

and Todaro, 1970). The presence of disamenities is a further possible explanation; given the

large differences in living standards, it is likely that a combination of factors is driving these.

Viewing data through the lens of population density is in line with the fairly recent move-

ment away from a dichotomous urban-rural distinction towards thinking about allocations in

a continuous space (Desmet and Rossi-Hansberg, 2014; Henderson, Storeygard, and Deich-

man, 2014; Desmet and Henderson, 2015; Henderson, Storeygard, and Weil, 2012). In Gollin,

Kirchberger, and Lagakos (2015), using data from Demographic and Health Surveys we show

that the large differences in living standards are continuously and monotonically increasing

over population density space, and this pattern holds within education groups. Desmet et al.

(2015) evaluate the welfare effects of migration restrictions assuming that a spatial equilib-

rium holds within countries. Amenities play a key role in their model, and their parameter

characterizing the relationship between amenities and population comes from estimates relat-

ing amenities in metropolitan statistical areas in the United States to population. My paper

differs in that, rather than assuming a spatial equilibrium holds within countries, I test this

assumption for African countries by directly measuring and documenting the evolution of key

disamenities across population density space.

I am not the first to find that mistrust is higher in denser areas in Africa. Nunn and Wantchekon

(2011) use the 2005 Afrobarometer survey, demonstrating that a higher exposure to the slave

trade reduced levels of trust. They control for urban location as classified by the survey, but

the coefficient is not reported in the main paper. I geo-locate two further rounds of the same

survey and link the data with spatial population density data. Replicating their results, I find

that the coefficient on the urban dummy is negative in all their models and highly significant.

The patterns found in the two papers are therefore similar in that urban location is associated

with higher levels of mistrust.8 The weak evidence for classical disamentities such as crime and

8The most common generalized trust question asks individuals whether they think that “Most people can be

trusted” or whether he or she thinks that one “has to be very careful”. Overall, generalized levels of trust in Africa

are lower than what similar data suggest for Europe and the United States (Algan and Cahuc, 2014). The average

in the 18 countries of 2005 Afrobarometer survey is 16% of individuals reporting that most people can be trusted,

compared to 40% in the United States, and above 68% in Norway. Within Africa and Europe regional differences

are substantial too, both within countries as well as across countries. The lowest level of generalized trust in my
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pollution adds another dimension in which the urbanization process in Africa differs from other

parts of the world, such as the absence of the commonly observed link between urbanization

and industrialization (Jedwab, 2013).

My use of data on self-reported quality of living conditions as a summary measure of overall

living standards contributes the literature on the use of subjective well-being data as alternative

measures of consumption and income (Deaton and Stone, 2013; Stevenson and Wolfers, 2013)

and the role of non-material consumption goods such as social connections and happiness

determining location choices (Glaeser, Gottlieb, and Ziv, 2015; Barnhardt, Field, and Pande,

2015).9 This paper differs from these existing studies in that my geo-referenced data allow

me to look at these measures across space within a large range of developing countries. In

this sense, I present a spatial version of the Easterlin Paradox. Further, the interpretation

of my results is slightly different due to the phrasing of the question in the Afrobarometer,

which is less likely to reflect happiness or life satisfaction in general but more specifically a

comprehensive self-assessment of living conditions.

Determining whether large observed gaps in living standards are due to inefficiencies matters

for policy. If there are large gaps in outcomes between urban and rural areas that remain

difficult to explain by looking at the distribution of consumption and amenities across locations,

there might be substantial efficiency gains from alleviating factors restricting internal mobility.

On the other hand, if the observed outcomes appear efficient, intervention must be justified by

concerns other than efficiency. My findings also imply that, while cities share certain features

across different contexts, the type of amenities and disamenities denser areas deliver vary

substantially not only across levels of development but also across contexts. The significant

pollution-population density gradients present in China and India are not present in most Sub-

Saharan African countries. This emphasizes that models aimed at explaining location choices

of individuals ought to be tailored to the particular context and process of urbanization they

try to characterize. For example, my results suggest that modeling pollution as an endogenous

disamenity as in Hanlon (2015) is very insightful for the Asian context where there is a strong

relationship between pollution and urbanisation, but is less likely to capture location choices

across space in most of Africa where this relationship is largely absent.

While it is still possible that a spatial equilibrium holds under certain conditions, I find little

evidence that the first order explanations for a spatial equilibrium fully rationalize the ob-

served differences in living standards. It is possible that I fail to measure a relevant disamenity.

sample is in Malawi with 6.9% compared to 27% in Benin.
9Glaeser et al. (2015) argue that their measure of happiness, which comes from a question on life satisfaction

in most of their surveys, should be seen rather as an input into the utility function than utility itself. Individuals

in the United States get compensated for lower levels of happiness by higher wages.
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However, it is not clear what disamenity this is, and its effect would have to be large.

The paper is structured as follows. Section 2 sketches a conceptual framework that guides the

empirical analysis; Section 3 discusses the data and how I link them with population density

data. I discuss my main results in section 4 and provide a conclusion in Section 5.

2. Conceptual Framework

The workhorse model of location choice across space is the Rosen-Roback model, developed

by Rosen (1979) and Roback (1982). The aim of this section is to fix ideas that guide the em-

pirical analysis; I mainly rely on the treatment presented in Glaeser (2008). The Rosen-Roback

model’s goal is to understand the key drivers affecting consumers’ and firms’ location choices.

The most basic form of this static spatial equilibrium model has three main components: (i)

consumers maximize utility from amenities, a tradable good, and non-tradable housing; (ii)

firms maximize profits by choosing the optimal amount of labor and capital; and (iii) builders

maximize profit by chosing the optimal amount of height and land. This yields a spatial equi-

librium condition for consumers, firms, and builders.

I use the consumption side of the model to illustrate the basic intuition behind this framework.

Assume that there is a large number of locations individuals can choose from, and that these are

indexed by population density d. At each location, consumers receive utility from consuming

amenities as captured by an index θd (for example, fresh air or safety), a tradable good cd and

non-tradable housing hd . They have a Cobb-Douglas utility function

Ud = θd c
1−αd

d
h
αd

d

where 0 < αd < 1, ∂ Ud/∂ cd ≥ 0, ∂ Ud/∂ hd ≥ 0 and ∂ Ud/∂ θd ≥ 0 for all levels of c, h and

θ . Consumers earn wages wd and pay rent pd per unit of housing. The price of the tradable

consumption good cd is normalized to one so that the budget constraint is

cd =wd − pdhd .

The key equilibrium condition is that utility Ū is equalized across space. If there was a location

that provided a better bundle of every input into the utility function, an individual would move.

A testable proposition follows from the simple model for any regions j and k:

Proposition 1 (Compensating Differentials.) If c j > ck and h j >hk then it has to be that at least

for one element of θ , it is the case that θ j <θk.10

10A stronger version of the proposition is that for utilities to be equal, the higher non-housing and housing
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To illustrate the intuition behind Proposition 1, let us fix Ū = 20, α= 0.5, h= 1, and proxy

c with an asset and housing quality index, counting the number of durables a household has

and housing quality indicators using data from Gollin, Kirchberger, and Lagakos (2015) for 20

Sub-Saharan African countries.11 I then divide individuals into population density deciles and

compute the average of the index for the different deciles across the entire sample. Having

fixed Ū , α, and h, this allows me to back out how the value of amenities evolves across space.

Figure 1 shows this relationship between consumption, amenities, and utility. The x-axis shows

different locations d as measured by deciles of the log of population density. Consumption and

amenities are measured on the left hand side axis, utility on the right hand side axis. The Rosen-

Roback model implies that households located at very low population density levels have low

levels of consumption but are compensated by higher levels of amenities, for example better

air quality and lower levels of crime. For a given increase in living standards across population

density space, amenities have to decrease to ensure equality of utilities across space. If a

location provided better consumption and better amenities for a given set of wages and prices,

individuals would move to the location until arbitrage opportunities have been exploited. If I do

not find any amenity that decreases with population density, this is suggestive that something

prevents individuals from exploiting these arbitrage opportunities.

A short discussion of migration costs is warranted at this point. The simple model assumes that

individuals are fully mobile and mobility costs are equal to zero. Morten and Oliveira (2014)

relax this assumption. With non-zero migration costs, individuals will move to a location as

long as the utility from the new location is higher than the utility in the old location plus the

cost of moving. In the absence of other types of frictions, this implies that the gap in living

standards would be explained by migration costs. Another simplification of the present model

is that it does not explicitly model differences within city boundaries, as explicitly modeled,

among others, by Ahlfeldt, Redding, Sturm, and Wolf (2015). This is at odds with one of the

most striking features of rapidly growing cities: the web of extreme wealth and poverty side

by side. Empirically, my approach is far less restrictive as I take into account differences in

amenities from the densest areas moving to the most remote areas in the country. The goal

of this example is to illustrate the intuition behind the model rather than a specific functional

form for amenities across space. A prediction of the simple spatial equilibrium model is that at

least one element of the amenity vector has to deteriorate with population density space. The

consumption in region j has to be exactly offset by lower levels of amenities in region j. In the results section I

come back to what preferences would have to be in order to rationalize the data.
11The index simply counts a household’s assets (tv, car, phone, motorcycle) and measures of basic housing

quality (electricity, tap water, flush toilet, finished wall, finished roof). It therefore ranges from zero to ten; the

mean over the entire sample is 3.1.
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rest of this paper uses new sources of data on key disamenities across locations in Africa to test

this prediction.

3. Data

Until recently, measuring disamenities across space was not feasible. Exploiting progress in

surveying and mapping technology, I construct a new dataset that spatially links household

surveys on crime, mistrust and reported living standards with satellite-derived measures of

pollution and gridded population density. Specifically, I geo-locate the respondents of several

rounds of the Afrobarometer surveys and link them with recent estimates of pollution concen-

trations for particulate matter less than 2.5 microns in diameter (PM2.5) and nitrogen dioxide

(NO2) distributions derived from satellite data (van Donkelaar et al., 2015; Geddes et al.,

2015). I also use a number of further geo-referenced household surveys: Living Standards

Measurement Surveys (LSMS) and Demographic and Health Surveys (DHS). The population

density data come from the Gridded Population of the World v4 (Center for International Earth

Science Information Network, 2015). I select countries that satisfy four criteria: (i) the survey

or dataset is from 2005 or more recent12, (ii) spatial identifiers are available; these could be

location names, latitude and longitude of a household or survey cluster, or gridded geo-spatial

data; (iii) the country is larger than 50,000 square kilometers13, and (iv) classified as a low

income country by the World Bank in 2012.14 This section describes the various sources of

data I combine in more detail.

3.1. Pollution

Individuals, in particular in developing countries, are often exposed to both outdoor as well as

indoor pollution (WHO, 2014). Sources of outdoor pollution include vehicles, electricity gen-

eration, industry, waste and biomass burning, and re-suspended road dust from unpaved roads;

indoor pollution is mainly caused by burning of fuels for cooking.15 To measure exposure to

pollution faced by individuals, ideally I would employ measurements taken on the ground at

varying population densities and times of the year, as well as measure pollutants at indoor and

outdoor locations for different types of households. Unfortunately, data on ambient air pollu-

12This is to ensure that I combine data from similar time periods.
13This restriction leads me to exclude small countries such as Burundi with one major city or island states such

as Cape Verde.
14This implies a GNI per capita (Atlas method, current US$) below $4,126 in 2012.
15A growing literature shows how pollution affects health, human capital and productivity (Adhvaryu, Kala, and

Nyshadham, 2014; Currie and Walker, 2011; Currie, Hanushek, Kahn, Neidell, and Rivkin, 2009; Graff Zivin and

Neidell, 2012). For a comprehensive surveys of the literature on pollution and individual welfare see Graff Zivin

and Neidell (2013); on environmental amenities and city growth see Kahn and Walsh (2015).
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tion from ground measurements in African cities is scarce (Petkova, Jack, Volavka-Close, and

Kinney, 2013). I use the most recently available satellite-derived estimates of concentrations

of particulate matter equal to 2.5 micrometers or less in diameter (PM2.5) from van Donkelaar

et al. (2015) and nitrogen dioxide concentrations (NO2) from Geddes et al. (2015). These use

measures of aerosol optical depth and tropospheric vertical nitrogen dioxide column density to

approximate the distribution of pollutants in the atmosphere as observed from satellites. PM2.5

is harmful to health as particles of this small size are able to enter deeply into the respiratory

tract.

The World Health Organization recommends mean annual exposures of 10 µg/m3 or less for

PM2.5 and 40 µg/m3 or less for NO2, at the same time, highlighting that there are no levels of

pollution exposure that have been proven not to negatively affect health, referred to sometimes

as a “no-threshold model” (Geddes et al., 2015; WHO, 2006). Further, the consequences of a

particular pollutant mix remain unclear. These guidelines should be applied with caution when

examining satellite-derived estimates, as they refer to point measurements of ground stations

(Geddes et al., 2015); nevertheless, in the absence of more conclusive evidence, they give an

indication of the current recommended thresholds.

As my population density data is approximately from 2010, I take pollution data that are closest

in time. Specifically, I use the tri-annual mean (2009-2011) for both datasets. To capture

indoor pollution, I rely on Demographic and Health Surveys which collect data on the source

of cooking fuel households use. Solid sources of cooking fuel include coal, lignite, charcoal,

wood, straw and animal dung, compared to liquid sources which include electricity, liquified

petroleum gas, natural gas, biogas, and kerosene. The DHS questionnaire also asks where

households undertake their cooking. I define a dummy for indoor cooking as equal to one if

the respondent states that food is cooked in the house or in a separate building.

3.2. Crime and Mistrust

To measure violent and property crime at small levels of geographic detail, I use three rounds

of the Afrobarometer surveys (2005, 2009 and 2011) for Benin, Burkina Faso, Cameroon,

Cote D’Ivoire, Ghana, Kenya, Liberia, Madagascar, Malawi, Mali, Mozambique, Niger, Nigeria,

Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zambia and Zimbabwe. These countries form

my base sample for which I will present all other results.

The Afrobarometers are high quality micro surveys covering between 1200-2400 individuals

in each of several African countries. Table 1 in the appendix shows the number of rounds a

country is part of the survey, as well as the number of observations per country. The surveys are

designed to use consistent methodologies and definitions across countries. The questionnaire
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focuses on attitudes towards democracy and governance, and includes questions on crime,

safety and trust. An advantage of survey data over administrative data on crime is that the latter

are likely to be biased towards areas with police presence. A positive relationship between

crime and population density could therefore be due to higher rates of reporting in denser

areas. Further, official administrative data on crime are often not stored centrally, or they are

unavailable to researchers. Both sources of information share a weakness in that their quality

is likely to suffer in areas or times of civil conflict as survey teams might not enter due to

safety concerns, and accurate record keeping is less of a priority. This only biases my results

if conflicts always occur at a specific density and these areas are excluded from the survey. In

that case, it would lead to a downward bias of the rate of crime at that particular density. I use

multiple rounds of the Afrobarometer survey spanning six years to reduce the potential bias

inherent in a particular round.

To capture experiences of crime, the surveys ask “Over the past year, how often (if ever) have

you or anyone in your family had something stolen from your house?”, and “Over the past year,

how often (if ever) have you or anyone in your family been physically attacked?”. To measure

perceived safety, the questions are “Over the past year, how often have you or anyone in your

family feared crime in your own home?”, and “Over the past year, how often, if ever, have you

or anyone in your family: Felt unsafe walking in your neighborhood?”. The answer to these

questions on experienced crime and perceived safety are classified as “never”, “just once or

twice”, “several times”, “many times”, and “always”. I define a dummy variable as equal to

one if a respondent’s reply is anything more than “never”.16 About one third of respondents

reports a theft from their house in the previous year. The highest rates of theft are in Liberia

(49%), Uganda (42%) and Senegal (39%) and the lowest rates are in Madagascar (13%),

Niger (18%) and Mali (21%). The heterogeneity in physical attacks follows a similar pattern

for most countries and the pairwise correlation coefficient at the country level between theft

and attack is 0.7 and highly significant. Exceptions include Senegal, where theft is high but

attacks are reported infrequently. Across the whole sample, more than one third of respondents

report that they felt unsafe in their neighborhood at least once in the past year, and that they

feared crime in their own home.

To explore whether social cohesion is lower in more densely populated areas I rely on questions

about trust towards neighbors and co-ethnics. The questionnaire asks “How much do you trust

each of the following types of people: Your neighbors?" and “How much do you trust each of

the following types of people: People from your own ethnic group?". Responses are classified

16In the 2011 round the categories slightly changed to “yes, once”, “yes, twice” and “yes, three or more times”.

My results are qualitatively the same when I use the ordered variable as my measure of crime rather the binary

variable.
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into four categories: not at all, just a little, somewhat, a lot; I define a dummy variable mistrust

as equal to one if respondents report that they trust neighbors/coethnics not at all, or just a

little. About 37 percent of respondents report that they either don’t or only little trust their

neighbors, and average mistrust towards co-ethnics is 43 percent. There are large differences

across countries. For example, in Senegal, Burkina Faso and Mali only between 10–18 percent

of respondents report mistrust towards their neighbors, compared to 48–60 percent in Liberia,

Sierra Leone and Nigeria.

3.3. Population Density Measures

To measure population density, I use data from the Gridded Population of the World Version

4 (GPWv4), which provides population density estimates at a resolution of 30 arc-seconds

corresponding to about 1km at the equator (Center for International Earth Science Informa-

tion Network, 2015). The gridded population data employ a minimal amount of modeling

by equally distributing non-spatial population data from censuses among spatial datasets of

administrative units (Doxsey-Whitfield, MacManus, Adamo, Pistolesi, Squires, Borkovska, and

Baptista, 2015).

One attractive feature of GPWv4 for the purpose of this analysis is that the distribution of pop-

ulation data is transparent and performed without using further auxiliary data. This comes

at a cost of a lower resolution that is offered by alternative data sources. For example, one

higher resolution dataset is WorldPop, which uses a range of input data and has a resolution

of 100m (Linard, Gilbert, Snow, Noor, and Tatem, 2012). For my analysis, one important con-

sideration on input data is that they might introduce circularity in measurement. For example,

if nighttime lights data from satellites are used to redistribute populations in order to achieve

population densities at finer geographical scale, and I then use these data to estimate the rela-

tionship between population density and electrification, by construction, higher densities will

have higher rates of electrification. I rule out this circularity by using population density data

that are not modeled using further input data. The maximum dispersion assumption of GPWv4

within spatial administrative units therefore biases me towards finding no relationship between

population density and outcome variables.

The resolution of the census data that are used as input varies across countries due to avail-

ability of data. Some countries provide their data at the level of the enumeration area, while

others only share their second administrative level data. I restrict my analysis to countries for

which the input census data have sufficiently high spatial detail, roughly more than 40 regions

per country.
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3.4. Spatially linking Pollution, Crime, Mistrust and Density

I next combine the different sources of data step by step. Both the pollution data and the pop-

ulation density data are gridded data, making it straightforward to link them. The estimated

PM2.5 and NO2 concentrations are available at a resolution of 0.1 decimal degrees (about

10km at the equator) compared to the 30 arc-second resolution of the population data. I con-

struct a fishnet grid of the same resolution of the pollution data (the coarser spatial resolution)

and for each pixel compute the average pollution measure as well as the average population

density from the GPWv4. PM2.5 is measured in µg/m3 while NO2 is measured in ppb (parts

per billion).17

Figure 2 illustrates this procedure and shows the distributions of pollutants and population

density across space in Nigeria. The top left graph shows the distribution of population den-

sity, the top right graph shows the NO2 distribution, and the two bottom graphs show PM2.5,

where the graph on the right removes sea salt and dust. Warmer (darker) colors denote higher

values, and the bins are formed by dividing the data into deciles. Population density in the

North is highest around Kano; in the center around Abuja; in the South West close to Lagos

and Ibadan; and in the South East between Benin City, Port Hartcourt and Enugu. At least vi-

sually, population density does not appear to be strongly correlated with either of the pollution

measures. Nitrogen dioxide levels are very low, with a maximum of 0.7 ppb (1.316 µg/m3), far

below the WHO recommended thresholds of 40 µg/m3. Values are higher over Lagos, Ibadan,

Abuja, Kanduna and Kano, but not over cities in the South East in the Delta, and there are

high levels in the center towards the West of the country where few people live. PM2.5 levels

appear to be mainly driven by dust from the Sahara when inspecting the bottom left graph.

Removing sea salt and dust produces quite a different distribution, with higher levels in the

center, and over some cities. There is no evidence that the health effects of non-anthropogenic

sources of PM2.5 are different from anthropogenic sources, so for the remainder of the paper

I present most results for the basic PM2.5 estimate that contains sea salt and dust, and show

the full set of results for PM2.5 after removing anthropogenic sources in the Appendix.

The Nigerian example illustrates further that looking separately at PM2.5 and NO2 is instruc-

tive.18 The pairwise correlation between PM2.5 and NO2 is 0.05. Across my whole set of

African countries, the correlation of these two measures ranges from 0.64 in Cameroon to

-0.47 in Senegal.

17Following Vrijheid, Martinez, Manzanares, Dadvand, Schembari, Rankin, and Nieuwenhuijsen (2011), I use

a conversion of 1ppb= 1.88 f µg/m3 which assumes ambient pressure of 1 atmosphere and a temperature of 25

degrees celsius.
18This is in line with what Geddes et al. (2015) find when they inspect population weighted average PM2.5

and NO2 levels and trends.
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To link the individual data from the DHS and Afrobarometer with population density, ideally I

would have the GPS location of households. Unfortunately, the Afrobarometer did not collect

the GPS location, but the location name was recorded. I develop an algorithm that performs

a series of exact and fuzzy matches of location names relying on data from a global gazeteer

that contains the latitude and longitude of a location. Depending on the survey round, this

involves between thirteen and twenty-one steps in which the village name, district name and

region name are sequentially matched with the ascii name of locations as well as up to four

alternative names listed in the gazetteer. To catch mis-spellings, I perform fuzzy matches based

on similar text patterns, using a similarity score of 0.7 and a vectorial decomposition algorithm

(3-gram) (Raffo, 2015). Appendix A provides further detail on the matching procedure. Using

this algorithm I am able to geo-locate between 85–95% of village names in each round.19

For each respondent I can then extract the population density value as well as the pollution

exposure.

The DHS readily collects GPS coordinates, but these have been re-assigned a GPS location that

falls within a specified distance of its actual location to preserve anonymity of survey respon-

dents. Urban DHS clusters are randomly displaced by 0-2km and rural clusters are randomly

displaced by 0-5km, with 1 percent of clusters randomly selected to be displaced by up to 10km

(Perez-Heydrich, Warren, Burgert, and Emch, 2013).20 I take into account the random offset of

DHS cluster locations when linking DHS GPS data with continuous raster data by taking 5 km

buffers around both urban and rural DHS clusters as suggested by Perez-Heydrich et al. (2013).

Figure A.1 illustrates this procedure and discusses the sampling protocol of the surveys. With

these different pieces of information in hand, I can test whether the data are consistent with a

simple static spatial equilibrium model when considering this key set of disamenities.

4. Disamenities across Space

As Young (2014) and Gollin, Kirchberger, and Lagakos (2015) show, real measures of living

standards are consistently better in denser areas suggesting that prices are not the equilibrating

mechanism. If we take a spatial equilibrium model seriously, then this means that for utilities

to be equal across space, key disamenities have to be higher in denser areas. To do justice to

the richness of the data, I present my results in four steps that highlight different features of

the data: I start by showing the spatial evolution across the entire density spectrum for several

selected variables. I will not impose any restrictions on functional form here and estimate

19Nunn and Wantchekon (2011) manually geo-locate the respondents of the 2005 Afrobarometer round. When

I compare their locations with mine, I find that median distance is 10km.
20The displacement is done by selecting a random displacement angle between 1-360 degrees as well as a

random distance.
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the relationship between disamenities and population density non-parametrically. Second, I

present summary graphs for the entire set of countries in my sample, depicting outcomes for

the highest compared to the lowest population density quartile. Using this comparable metric

allows me to compactly present differences in disamenities across space for many countries.

Third, using parametric restrictions on the relationship I estimate population density gradients

for each of the variables and countries. Finally, I pool the data and formally test if there is

a positive relationship between population density and disamenties. For the first two parts I

discuss each group of disamenities separately, and then combine them in the last two parts.

4.1. Pollution

I first examine satellite-derived estimates of PM2.5 and NO2 distributions across space and

then move to types of fuels used by households, including the location of cooking activities.

Both pollutants are measured as micrograms per cubic meter (µg/m3). Figure 3 shows a

kernel-weighted local polynomial regression of the level of pollution on the log of population

density in Nigeria using data from the entire country, and plotting 95 percent confidence in-

tervals. The top panel shows the results for PM2.5 and the bottom panel shows NO2 levels

across population density space.21 Taking the log of population density removes uninhabited

pixels.22 The figure confirms what the visual inspection of figure 2 suggested: there is no ev-

idence that pollution levels are higher in denser areas such as cities. If anything, there is a

negative relationship between PM2.5 levels and population density. When sea salt and dust

are removed, the relationship is flat. One interpretation of this relationship is that cities in

Nigeria are located in areas where PM2.5 levels are lower. Whatever pollution is being emitted

by denser areas in Nigeria, it does not dominate the high non-anthropogenic levels, leading

to a positive relationship between population density and pollution. Nitrogen dioxide concen-

trations show an increase first at low levels of density, and then decrease until they increase

again at higher levels of density (but the confidence interval becomes large at the highest level

of density). The average level of NO2 in Nigeria is 0.49 µg/m3, which is low compared to the

WHO recommended threshold of 40 µg/m3.

Figure 4 shows PM2.5 level for all African countries in my sample. Several countries show a

negative correlation between PM2.5 and population density, such as Benin, Ghana and Ivory

Coast. Density gradients are sometimes flat, for example in Kenya, Malawi, Tanzania and

Zambia; only a handful of countries show a positive gradient, such as Liberia, Cameroon and

21About half of the population-weighted ten-year mean of PM2.5 concentration in Eastern Sub-Saharan Africa

is estimated to be due to dust and sea salt; in Western Sub-Saharan Africa the proportion amounts to about three

quarters (van Donkelaar et al., 2015).
22I remove the top and bottom five percentile of the population density distribution as very few observations

fall into this bin and patterns are potentially misleading.
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Senegal. There are large differences in levels. Some countries have PM2.5 levels that are

above the WHO recommended thresholds of 10 µg/m3 at all levels of population density, such

as in Ghana, Mali, Liberia, Niger, Senegal, and Sierra Leone; others, including Kenya, Uganda,

Zambia and Zimbabwe are below the threshold for all levels of density. Finally, there is also a

strong difference between the two PM2.5 measures, particularly in West African Sub-Saharan

countries, such as Benin, Burkina Faso, Mali, Nigeria, Senegal, and Sierra Leone.

Figure 5 shows the same figures for NO2 concentrations. Average NO2 levels are very low

across the African countries in my sample: 0.26 µg/m3 compared to the WHO recommended

threshold of 40 µg/m3. Similar to the relationship between PM2.5 levels and population den-

sity, the data also does not suggest clear patterns with population density. In some coun-

tries there is a positive relationship between NO2 and population density, such as in Kenya,

Cameroon, and Niger; others exhibit a negative relationship, such as Benin, Ivory Coast, and

Sierra Leone. Still, all of the countries have very low levels. Figures B.1 and B.2 in the ap-

pendix show PM2.5 and NO2 levels rescaled for each country. Overall the findings suggest that

there are no clear patterns between pollution levels and population density.

What do these gradients look like in other parts of the world? For example, what do the data

show for countries known to suffer from high levels of urban pollution, such as China? The

global coverage of the PM2.5, NO2 and population density data allows me to look at further

countries. Figure B.3 in the Appendix shows the correlation between population density and

pollution for China, India, and the United States. All three countries show density gradients.

In China, PM2.5 levels for the top population density decile amount to 67 µg/m3, more than

six times the WHO recommended threshold; the lowest population density decile has a level

of 14 µg/m3. In India, the top decile has a level of 41 µg/m3, still four times the WHO

recommended threshold, compared to 6 µg/m3 in the lowest decile. The bottom figure shows

NO2 distribution for these other countries. The levels are much lower, but there are gradients

again for China, India and the United States.

I do not make a claim here that pollution does not matter in African cities. The satellite-

derived pollution estimates do not capture pollution exposure in several dimensions: they are

annual series and therefore average out temporarily high values. Second, at a 10km resolution

they are spatially rather coarse, ignoring local effects such as proximity to roads – which have

been demonstrated to matter significantly. For example, Kinney, Gichuru, Volavka-Close, Ngo,

Ndiba, Law, Gachanja, Gaita, Chillrud, and Sclar (2011) find average PM2.5 concentrations at

four traffic sites between 7.30am and 6.30pm in Nairobi to amount to between 58.1 and 98.1

µg/m3; the maximum multi-annual average PM2.5 concentration for Kenya in our sample is

13.9 µg/m3, and this pixel is at Lake Turkana, the world’s largest desert lake (Avery, 2012).
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Nevertheless, as the graphs from India, China, the US and the UK illustrate, the series still

capture meaningful variation in concentrations levels across space. What emerges, rather, is

that in Africa, cities are not large enough and their concentration of industries is not significant

enough to create large clouds of pollution around cities while background non-anthropogenic

pollution is high, to produce similar gradients as observed in other parts of the world.

As a proxy for indoor air quality I examine the main material used for cooking as reported

in the DHS. The World Health Organization estimates that over 4 million people suffer from

pre-mature deaths due to illnesses attributable to cooking with solid fuels, such as wood and

charcoal (WHO, 2014). Indoor air pollution is also estimated to contribute significantly to

pollution-related morbidity and mortality. Figure 6 shows the proportion of households using

solid fuels for cooking across population density. In several countries, such as Liberia, Malawi,

Mali, Sierra Leone and Uganda, solid materials are used by almost all households irrespective

of location. For other countries, including Cameroon, Kenya or Nigeria, there are substantial

gradients: households are more likely to use liquid fuels in more densely populated areas.

One potential advantage of rural areas is that there might be more space to accommodate

outdoor cooking, thereby somewhat mitigating the negative effect of using solid fuels. The

data suggests quite the opposite.

Figure 7 shows the probability that a household cooks inside. The red line restricts the sample

to households whose main source of cooking fuel is solid. For countries in which solid fuels

dominate across the whole population density spectrum, the grey line is not visible. Overall,

there are no clear patterns that hold for all countries across density space, as well as between

households using solid fuels compared to the whole sample; if anything, households using solid

fuel for cooking are almost in all countries less likely to cook inside in denser areas compared

to less dense areas. One possible explanation is that rooms are smaller in denser areas, so that

cooking is done outside. I now turn to Afrobarometer data to examine differences in crime and

mistrust across population density space.

4.2. Crime

Figure 8 shows differences in experienced crime and fear of crime across space. I compare the

highest density with the lowest density areas. To do this, I divide the dataset into population

density quartiles and compute the average level of the variable for each quartile in a country,

using the within country sample weights provided by the survey.23 The closer they are to the

45 degree line, the more similar outcomes are across population density space. If countries

23An alternative would be to compute quartiles for each country separately. I prefer to define quartiles over the

entire sample in order to compare outcomes for similar population densities.
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exhibit a significant positive relationship between population density and crime, we would

expect these averages to cluster in the lower triangle of the figure.

Both figures illustrate that most countries are located close to the 45 degree line. Property

crime appears to be slightly higher in denser areas, but the differences for most countries are

fairly small. One weakness of the variable is that it does not consider livestock theft, a type

of crime common in rural areas. It is therefore likely that the difference is even smaller when

taking into account livestock theft. The results are similar for fear of crime and perceived

feeling of safety in the neighborhood, where most countries cluster around the 45 degree line.

The weak association between crime and density is against the conventional wisdom consider-

ing crime as a main disamenity of cities. Denser areas are thought to have higher levels of crime

by raising the frequency of interactions between individuals, the potential gain from commit-

ting a crime (such as theft) due to higher welfare, and the lower likelihood of being caught

due to higher anonymity. However, my finding resonates with evidence from Madagascar and

South Africa suggesting that crime in Africa might be even higher in less densely populated

areas (Fafchamps and Moser, 2003; Demombynes and Ozler, 2002). Madagascar also in my

data exhibits this pattern: in the lowest population density quartile 13% of respondents report

theft compared to 9% in the highest population density decile. Explanations for the inverse

relationship include a lack of police presence in rural areas, higher levels of organized crime

and higher alcohol consumption due to a lack of other entertainment activities (Fafchamps and

Moser, 2003). Fafchamps and Moser (2003) instrument for police presence with amenities and

find that the negative relationship between crime and population density is not driven by the

bias in policing.

4.3. Mistrust

By bringing together large numbers of people cities are more anonymous places. One possible

downside is that networks are weaker. Busy, buzzing city life might also be more stressful,

lonely and isolating compared to life in rural areas. If individuals have sufficiently strong

preferences for living in an area with strong social cohesion this could be part of the explanation

for the stark differences in living standards that we observe.

Figure 9 shows differences in trust towards relatives, neighbors and co-ethnics for the highest

and lowest population density quartile. Almost all quartile-level means are located in the upper

triangle, suggesting that higher levels of trust in the lowest population density quartile com-

pared to the highest population density quartile. Observing the same pattern in trust towards

co-ethnics strengthens the argument that the observed patterns in expressed trust towards

neighbors are not simply capturing a positive correlation between trust towards coethnics and
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higher propensity to be located next to coethnics in the sparsely populated ares. This evidence

suggests that trust appears to be a potential compensating differential that keeps people from

moving to more densely populated areas.

A seminal paper on trust is Nunn and Wantchekon (2011) who use the 2005 Afrobarometer

survey and demonstrate that a higher exposure to the slave trade reduced levels of trust. They

control for urban location as defined by the survey, but the coefficient is not reported in the

main paper. I replicate their results with a focus on the coefficient on the urban dummy. I

find that the coefficient is always negative and highly significant when including their full set

of controls (Table 2 in their paper), in the IV specification (Tables 5 and 6 in their paper), as

well as in the regressions controlling for individual level distance to the coast (Tables 7 and

8 in their paper).24 The patterns found in the two papers are therefore similar in that urban

location appears to be associated with less trust.

4.4. Parametric tests

The results so far do not suggest that disamenities are substantially higher in more densely

populated areas. A simple spatial equilibrium would predict a relationship as illustrated by

Figure 1 in which dissamenities are higher in more densely populated locations. To formally

test whether there is a positive gradient of disamenities with respect to population density, I

estimate the following equation for individual i at location j at time t

θi j t =α+γt +β lndi j+ǫi j t

where θ captures different measures for disamenities: crime, pollution and mistrust; and d

represents population density. All models include survey round fixed effects γt . The number

of observations varies as certain questions are not asked in some countries in a particular round.

I start by estimating these regressions for each of the countries separately. Figure 10 presents

the coefficients of these regressions where each of the blue dots represents a coefficient. The

upper panel shows the four variables on crime, and the lower panel show the results for pollu-

tion and trust. The red line indicates zero, and the grey crosses show the median coefficient.

For the different measures of crime, the slope coefficient is overall small and a median coef-

ficient close to zero; a substantial number of countries has a negative relationship between

crime and population density, as indicated by the dots below the horizontal line. The size of

the coefficients, however, tends to be small, for example, considering the average levels of theft

of 31 percent. The lower panel indicates that for both types of pollution, countries are rather

24For example, taking column (1) of table 2, I find that urban residents are 3.5% less likely to report trusting

their relatives “somewhat”, or “a lot”.
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equally distributed above and below the zero line, again, with coefficients that are small in

magnitude. The only variable that shows a clear pattern is trust in the bottom right panel; for

all measures of trust there is a negative relationship.

To test whether the observed pattern is statistically significant, I next pool all countries but

include country fixed effects ξc to allow for different levels of disamenities across countries.

As before, fixed effects for the different survey rounds. Each column in table 2 presents a dif-

ferent regression where the disamenity tested is listed as the column header. The stars denote

signficance levels with p-values corrected for multiple hypothesis testing using a correction

proposed by Benjamini-Hochberg (1995). I find that two measures of crime are significantly

different from zero and positive; for the remaining measures of crime, the sign and size of the

coefficients of the is similar. I find that pollution is not significantly higher in more densely

populated areas. Levels of PM2.5 exposure are significantly lower in denser areas, and NO2 is

not significantly related to population density. It is possible that the functional form is incorrect

so I have also estimated this equation using the log of the two pollution measures; the results

remain the same. Unsurprisingly considering the evidence from Figure 10, mistrust towards

neighbors and co-ethnics is significantly higher in denser areas.

Is it likely that compensating differentials are sufficiently high to account for the differences

in observed living standards? I approach this question from three angles: first, I compare the

size of the correlation of disamenities and population density with the change in assets for

the same change in population density. Second, I examine the gap in consumption levels that

would have to be explained by differences in disamenities. Third, I use self-reported living

standards as a comprehensive assessment of living conditions that encompasses disamenities I

did not consider.

To compare the magnitudes of disamenities with changes in living standards ideally I would

use data on consumption across population density space. Unfortunately, the Afrobarometer

survey does not collect such data. However, the 2011 round of the survey has data on variables

representing real measures of consumption: whether the respondent owns a television, radio,

or phone; if the source of water for household use is inside the house or compound and if the

toilet or latrine is located inside the house or the compound. I compute a simple linear index

of these assets and housing characteristics which ranges from zero to one. The relationship

with assets and population density is highly significant and suggests that doubling population

density is associated with an increase in assets by 13% of a standard deviation. This magnitude

is large compared to the relationship of crime and mistrust with population density: a doubling

of population density is associated with a 1.7% or 5% of a standard deviation for the experience

of theft or higher levels of mistrust. The heterogeneity in assets associated with population
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density is thus 8 times the heterogeneity in crime associated with population density. This

suggests that while there is evidence for compensating differentials, it is unlikely that they

compensate for the significantly lower living standards.

I next use data from National Panel Survey in Tanzania to compare the magnitude to changes in

consumption as one moves across population density space. I find that a doubling of population

density is associated with a 12% higher per adult equivalent annual real expenditure on food,

furnishing and recreation. To obtain the appropriate crime-population density gradient I obtain

the density gradients for Tanzania as shown in figure 10. The coefficient on theft is 0.01

and the coefficients on the other crime variables and on trust are are very close to zero and

insignificant.25 This indicates that, for a spatial equilibrium to hold, households would have

to be willing to give up 12% of their annual real expenditure for a decrease in the probability

of theft of 0.01%.

It is possible that there is an unobserved dimension of quality of life that I do not capture

in my vector of amenities, and households have a strong preference for this amenity. The

Afrobarometer survey has a question on self-reported living conditions. More specifically, the

questionnaire asks: “In general how would you describe your own present living condition?”

The respondent’s options are: very bad, fairly bad, neither good nor bad, fairly good and very

good.26 Using the distinction raised by Deaton and Stone (2013), the Afrobarometer measure

qualifies as an evaluative rather than a hedonic measure, as individuals are required to con-

template. It is likely to represent a comprehensive measure of living standards, encompassing

dimensions of disamenities I did not consider so far. I find that reported living conditions are

significantly higher in denser areas. Finally, the Afrobarometer asks “In the past month, how

much of the time: Have you been so worried or anxious that you have felt tired, worn out, or

exhausted?”. If respondents reply with “many times” or “always” I take this as a measure of

anxiety. Again, I find that anxiety is generally lower in denser areas.

A limitation of this paper is that I can not prove or disprove the existence of a spatial equilib-

rium in Africa. My estimates suggest that it is unlikely that disamenities fully rationalize the

observed differences in living standards. However, it is possible that I fail to measure a relevant

disamenity. I argue that self-reported living conditions are likely to contain dimensions of dis-

amenities which I could not measure. The fact that I still find on average higher self-reported

living conditions in denser areas suggests that disamenities such as crime and mistrust explain

25If I don’t truncate the sample by the top and bottom five percentile there is also no gradient on theft.
26The question just before asks how households would describe the economic situation of their country. Thus,

although the question is phrased as an absolute measure, there is reason to believe that the prior question might

have introduced a reference point. It is at the beginning of the questionnaire, right after asking a respondent

about their age, language, and whether the respondent is the head of the household.
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part of the differences, but not all of them. However, I can not rule out that there are certain

disamenities households fail to report when asked about their overall living conditions, which

in turn fully compensate them for the lower living standards in rural areas. It is not clear what

they are and they would have to be large, but this is possible. Second, the focus of this paper

is on testing the static relationship between disamenities and population density space. Un-

fortunately, the Afrobarometer data does not contain information on past migration choices of

households to explore.

5. Conclusion

This paper aims to make progress on our understanding of the persistence of lower living

standards in rural compared to urban areas in Africa. These have been found in real measures

of consumption, within densely and sparsely populated areas, and within education groups;

they are compounded by better housing quality and health outcomes in denser areas (Young,

2014; Gollin, Kirchberger, and Lagakos, 2015). A common assumption in the literature is the

existence of a spatial equilibrium in which utilities are equalized across locations (Rosen, 1979;

Roback, 1982; Glaeser and Gottlieb, 2009). One possible explanation for the large differences

in living standards are unobservable dimensions of rural life that compensate individuals for the

lower living standards in rural areas. Whether disamenities can plausibly explain differences

in living standards in Africa remains largely untested.

The paper’s main contribution is to exploit new sources of data and advances in mapping

technology to fill this gap by testing whether the spatial distribution of amenities is consistent

with a simple spatial equilibrium in a large number of countries in Sub-Saharan Africa. In

the process, I move beyond traditional urban-rural distinctions by viewing locations through

the lens of population density. My approach involves constructing a new dataset that spatially

links household surveys on crime, mistrust and reported living standards with satellite derived

measures of pollution, and gridded population density data. The central finding of the paper is

that the magnitude and sign of these key disamenities suggests that they are unable to offset the

differences in other dimensions of living standards. Somewhat surprisingly, pollution levels are

lower in rural areas than in urban areas. Crime and mistrust are slightly higher in denser areas,

but the differences are small compared to the differences in living standards. Self-reported

living standards are better on average in denser areas. Taken together, this evidence challenges

the idea that a spatial equilibrium currently holds in Africa.

Determining whether large observed gaps in living standards are due to inefficiencies matters

for policy implications. If there are large gaps in outcomes between urban and rural areas that

remain difficult to explain by looking at the distribution of consumption and amenities across
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locations, there might be substantial efficiency gains from alleviating factors restricting internal

mobility. On the other hand, if the observed outcomes appear efficient, intervention requires

to be justified by concerns other than efficiency. My findings also imply that while cities share

certain features across different contexts, the type of amenities and disamenities denser areas

deliver vary substantially not only across levels of development but also across contexts. This

emphasizes that models aimed at explaining location choices of individuals ought to be tailored

to the particular context and process of urbanization they try to characterize.
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Tables and Figures

Figure 1: Amenities, consumption and utility across population density space
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Notes: The figure shows the relationship between consumption, amenities, and utility as predicted

in a standard Rosen-Roback model. Consumption c is proxied with an asset and housing quality

index, counting the number of durables a household has and housing quality indicators using data

from Gollin, Kirchberger, and Lagakos (2015) for 20 Sub-Saharan African countries. The index

simply counts a household’s assets (tv, car, phone, motorcycle) and measures of basic housing quality

(electricity, tap water, flush toilet, finished wall, finished roof). It therefore ranges from zero to ten;

the mean over the entire sample is 3.1. I then divide individuals into population density deciles and

compute the average of the index for the different deciles across the entire sample. Having fixed

Ū = 20, α= 0.5, and h= 1, this allows me to back out how the value of amenities evolves across

space. For a given increase in living standards across population density space, amenities have to

decrease to ensure equality of utilities across space.
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Table 1: Afrobarometer Sample

Individuals Round 3 Round 4 Round 5

Benin 3550 x x x

Burkina Faso 2112 x x

Cameroon 944 x

Cote D’Ivoire 1168 x

Ghana 4037 x x x

Kenya 4573 x x x

Liberia 2204 x x

Madagascar 3880 x x x

Malawi 4768 x x x

Mali 3667 x x x

Mozambique 4565 x x x

Niger 1151 x

Nigeria 6836 x x x

Senegal 2400 x x

Sierra Leone 1039 x

Tanzania 4505 x x x

Togo 800 x

Uganda 7192 x x x

Zambia 3600 x x x

Zimbabwe 3016 x x

Notes: Column (2) shows the number of individuals in my sample for

each of the countries; columns (3)–(5) indicate when a country was

added to the Afrobarometer sample. Round 3 took place in 2005,

round 4 in 2008, and round 5 in 2011.
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Figure 2: Pollution in Nigeria
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Notes: The top left graph shows the distribution of population density, the top right graph shows the NO2 distribution, and the two bottom

graphs show PM2.5, where the graph on the right removes sea salt and dust. Warmer (darker) colors denote higher values, and the bins are

formed by dividing the data into deciles. Population density in the North is highest around Kano; in the center around Abuja; in the South West

close to Lagos and Ibadan; and in the South East between Benin City, Port Hartcourt and Enugu. At least visually, population density does not

appear to be strongly correlated with either of the pollution measures. Nitrogen dioxide levels are very low, with a maximum of 0.7 ppb (1.316

µg/m3), far below the WHO recommended thresholds of 40 µg/m3. Values are higher over Lagos, Ibadan, Abuja, Kanduna and Kano, but not

over cities in the South East in the Delta, and there are high levels in the center towards the West of the country where few people live. PM2.5

levels appear to be mainly driven by dust from the Sahara when inspecting the bottom left graph. Removing sea salt and dust produces quite

a different distribution, with higher levels in the center, and over some cities.
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Figure 3: Pollution and population density in Nigeria
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Notes: The figure shows a kernel-weighted local polynomial regression of the level

of pollution on the log of population density in Nigeria using data from the entire

country, and plotting 95 percent confidence intervals. The top panel shows the results

for PM2.5 and the bottom panel shows NO2 levels across population density space.

Taking the log of population density removes uninhabited pixels. I remove the top and

bottom five percentile of the population density distribution.
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Figure 4: PM2.5 concentration
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Notes: The figure shows a kernel-weighted local polynomial regression of the level of PM2.5 on the log of population density, including 95

percent confidence interval. Taking the log of population density removes uninhabited pixels. I remove the top and bottom five percentile of

the population density distribution.
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Figure 5: Nitrogen dioxide concentration across Africa
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Notes: The figure shows a kernel-weighted local polynomial regression of the level of NO2 on the log of population density, including 95

percent confidence interval. Taking the log of population density removes uninhabited pixels. I remove the top and bottom five percentile of

the population density distribution.
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Figure 6: Solid type of fuel for cooking
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Notes: The figure shows a kernel-weighted local polynomial regression of the a binary variable that is equal to one and zero otherwise if a

household uses a solid source of cooking fuel on the log of population density, including 95 percent confidence interval. Taking the log of

population density removes uninhabited pixels. I remove the top and bottom five percentile of the population density distribution.
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Figure 7: Food cooked indoors
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Notes: The figure shows a kernel-weighted local polynomial regression of the a binary variable that is equal to one and zero otherwise if a

household household cooks inside on the log of population density, including 95 percent confidence interval. Taking the log of population

density removes uninhabited pixels. I remove the top and bottom five percentile of the population density distribution.
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Figure 8: Crime - Afrobarometer
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Notes: The figure compares the proportion of individuals who report experiences of crime (shown in the figure on the left) or fear thereof

(shown in the figure on the right) in different population density quartiles. The x-axis shows the highest density quartile, and the y-axis shows

the lowest density quartile. The closer a country aligns to the 45 degree line, the more similar the prevalence of crime or fear of crime is.

3
7



Figure 9: Trust - Afrobarometer
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Notes: The figure compares the proportion of individuals who report mistrusting their neighbors or

coethnics in different population density quartiles. The x-axis shows the highest density quartile,

and the y-axis shows the lowest density quartile. The closer a country aligns to the 45 degree line,

the more similar trust levels are.
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Figure 10: Slope Coefficients
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Notes: The figure presents the coefficients of estimating the following equation for individual i at

location j at time t

θi j t =α+γt +β lndi j+ǫi j t

where θ captures different measures for disamenities: crime, pollution and mistrust; and d repre-

sents population density. All models include survey round fixed effects γt . I estimate these regres-

sions for each of the countries separately, so that every dot represents a coefficient β for a specific

country. The upper panel shows the four variables on crime, and the lower panel show the results for

pollution and trust. The red line indicates zero, and the grey crosses show the median coefficient.
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Table 2: The relationship between disamenities and density

Theft Attack Fear Unsafe

(1) (2) (3) (4)

Log of Pop density 0.008 0.004 0.007 0.017
(0.003)∗∗ (0.002) (0.005) (0.004)∗∗∗

Obs. 65922 63795 65784 30306

R2 0.037 0.032 0.029 0.042

PM25 NO2 Mistrust Mistrust

Neighbor Coethnic

(1) (2) (3) (4)

Log of Pop density -.565 0.009 0.027 0.026
(0.233)∗∗ (0.005) (0.007)∗∗∗ (0.009)∗∗

Obs. 65896 65995 46022 15635

R2 0.752 0.422 0.103 0.082

Notes: Each column shows the estimated population density gradient for the pooled sample,

where I include fixed effects for countries and rounds. Robust standard errors are shown

in parenthesis; ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels using Benjamini-

Hochberg (1995) q-values to correct for multiple hypothesis testing.
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Appendix

A. Linking survey and population density data

A.1. Geo-locating Afrobarometer respondents

The Afrobarometer surveys do not coordinates of respondents, but record the village, district

and region names. The 2011 round provides four different administrative names. I use a

matching algorithm that matches village names and other provided administrative names to

locations as listed in gazetteers; specifically, I follow Nunn and Wantchekon (2011) and use the

fallingrain gazeteer available on www.fallingrain.com. This website provides a list of locations

where each location is assigned an id along with several names: the geographical name of

the point in utf8 and plain ascii characters; alternative names, the associated latitude and

longitude coordinate. There is also auxiliary information such as the modification date of each

entry, administrative codes, elevation, and feature classes. If a name is associated with several

entries I keep the most recent entry.

The matching algorithm uses a mixture of exact matches and fuzzy matches in multiple stages

(depending on the survey round, between thirteen and twenty-one). Whenever a location

name is identified, I assign it the latitude and longitude and remove it from the dataset that is

fed into the next stage. In essence, matching is achieved in the following way: first, I perform a

series of exact matches based on the village name from Afrobarometer with the asciiname listed

in the gazetteer; in this stage I find already between thirty-six and forty percent of locations.

If there are no exact matches with the village name and the asciiname, I search through the

next four alternative names listed in the gazeteer for the specific location. This allows me

to match another 2–2.5 percent based on the village location. I then use the most precise

administrative classification. For example, if the data set has information on the village name,

district and region, this would be the district. I perform the exact same series of matches on

the district name, using again the asciiname as well as four possible alternative names listed in

the gazetteer. In rounds three and four of the survey in which I have only district and region

names in addition to the village names, this step finds 49–52 percent of the locations. Third,

I match on the region name which finds another 7–9 percent of the sample. Finally, to catch

any remaining misspellings I perform a fuzzy match based on similar text patterns between the

village name and the asciiname using a command developed by Raffo (2015). I use a similarity

score of above 0.70 and a vectorial decomposition algorithm (3-gram). This finds another 1–3

percent of locations. In total, I am able to match between 85 and 95 percent of locations in

each round.
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In addition to random checks of the identified locations I use the 2005 data to check the

consistency between my algorithm and Nunn and Wantchekon (2011)’s location data. For

the subset of locations for which they provide geo-locations, I find that the median distance

between their location and my location is 10km. Further, considering the population density

data vary largely at the district and region level, I expect the difference to be even smaller when

looking at the resulting population densities. Indeed, the correlation coefficient between the

population density from their and my data is 0.6 with a p-value of 0.000.

A.2. Spatial linking of DHS

Figure A.1: DHS clusters in Dar Es Salaam

Notes: Figure shows a 5km circle around a DHS cluster in Dar Es Salaam; the gridded data come

from WorldPop.

A.3. Samples

The DHS sample is in general chosen to be representative at the second administrative level, as

well as rural/urban within the second administrative level. While the DHS aim to make survey

instruments and samples comparable across countries, the exact sampling differs according

to the particular survey.27 The target population of most DHS surveys are women aged 15-

27For further information see: http://www.dhsprogram.com.
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49 and children under the age of five living in residential households with the most common

sampling following a two-stage cluster sampling procedure (ICF International, 2012). If a

recent census is available, the sampling frame of the census is used to define primary sampling

units which are usually enumeration areas. Alternative sample frames include lists of electoral

zones, estimated structures per pixel derived from high-resolution satellite imagery or lists of

administrative units. Clusters will then be stratified depending on the number of domains that

are desired for the particular survey, where a typical stratification is first at the geographical

level and then at rural/urban clusters. In the first stage, from each of the strata a random

sample of enumeration areas is selected inversely proportional to size. Unless a reliable listing

of households exists, households will be listed for each of the selected primary sampling units.

In the second stage, households are selected with equal probability. The Afrobarometer sample

is in general chosen to be representative at the national level of the voting population of a

particular country.

Unless the sampling frame is specifically selected to match the population along the lines of

population density, it is possible that the distribution of the survey sample according to popu-

lation density might not match that of the entire population. In practice, the cases that I have

examined show very little effort to oversample or undersample with respect to population den-

sity. For Tanzania I can compare the population density distribution of the Afrobarometer and

DHS clusters with those of the overall population from the census data where I weight the pop-

ulation density of enumeration areas by the population. As is evident from Figure A.2, both

the Afrobarometer survey as well as the DHS appear to capture a sample that covers a wide

range of population densities.
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Figure A.2: Distribution of population, DHS and Afrobarometer respondents in Tanzania
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Notes: The top figure shows the distribution of the population using the 2002

enumeration area census data and the total population in each enumeration

area as sample weights. The middle graph shows the distribution of population

densities from the DHS data. The bottom graph shows distribution of clusters

from Afrobarometer data. For expositional simplicity the top graph excludes

112 enumeration areas that have a log of population density above 12.
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B. Additional Tables and Figures
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Figure B.1: PM2.5 concentration
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Notes: The figure shows a kernel-weighted local polynomial regression of the level of PM2.5 on the log of population density, including 95

percent confidence interval. Taking the log of population density removes uninhabited pixels. I remove the top and bottom five percentile of

the population density distribution.
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Figure B.2: Nitrogen dioxide concentration across Africa
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Notes: The figure shows a kernel-weighted local polynomial regression of the level of NO2 on the log of population density, including 95

percent confidence interval. Taking the log of population density removes uninhabited pixels. I remove the top and bottom five percentile of

the population density distribution.
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Figure B.3: Pollution-Population Density gradients in other countries

6
6.

5
7

7.
5

P
M

25
 (

m
ic

ro
gr

am
s/

cu
bi

c 
m

et
er

) 
U

.S
.

0
20

40
60

80
P

M
25

 (
m

ic
ro

gr
am

s/
cu

bi
c 

m
et

er
) 

In
di

a 
an

d 
C

hi
na

2 4 6
Log of population density

China India United States

1
1.

5
2

2.
5

3
N

O
2 

(m
ic

ro
gr

am
s/

cu
bi

c 
m

et
er

) 
U

.S
.

0
2

4
6

8
10

N
O

2 
(m

ic
ro

gr
am

s/
cu

bi
c 

m
et

er
) 

In
di

a 
an

d 
C

hi
na

2 4 6
Log of population density

China India United States

Notes: The figures shows a kernel-weighted local polynomial regression of pollution

on the log of population density for China, India and the United States. The top panel

shows PM2.5, and the bottom panel shows NO2, both measured in micrograms per

cubic meter. All three countries show visible density gradients. In China, PM2.5 levels

for the top population density decile amount to 66 µg/m3, more than six times the

WHO recommended threshold; the lowest population density decile has a level of 13

µg/m3. In India, the top decile has a level of 41 µg/m3, still four times the WHO

recommended threshold, compared to 6 µg/m3 in the lowest decile. The bottom

figure shows NO2 distribution for these other countries. The levels are much lower,

but there are gradients again for China, India and the United States.
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